Properties of the

Measured at CLAS

Kei Moriyà (Indiana University) advisor: Reinhard Schumacher
(Carnegie Mellon University)

Outline

(1) Introduction

- What is the $\Lambda(1405)$?
- Chiral Unitary Theory of the $\Lambda(1405)$

(2) CLAS Analysis

- Introduction to JLab and CLAS
- Decay Channels of Interest
- $\Sigma^{0}(1385)$ and K^{*} Background
- Fit to Extract Λ (1405) Lineshape
(3) Results
- Λ (1405) Lineshape Results
- $\Lambda(1405)$ Cross Section Results
- $\Lambda(1520)$ Cross Section Results
- Cross Section Comparison
(4) Conclusion

What is the $\Lambda(1405)$?

- **** resonance just below $N \bar{K}$ threshold ($\sim 1435 \mathrm{MeV}$)
- $I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$[experimentally unconfirmed until now]
- Decays exclusively to $(\Sigma \pi)^{0}$
- Past experiments have found the lineshape ($=$ invariant $\Sigma \pi$ mass distribution) is distorted from a simple Breit-Wigner form

Main Question:

What is the nature of this distorted lineshape?

The $\Lambda(1405)$ in Hadron Spectroscopy

The $\Lambda(1405)$ in Hadron Spectroscopy

The $\Lambda(1405)$ in Hadron Spectroscopy

The Lineshape of the $\Lambda(1405)$

- Several theories exist on the nature of the distorted lineshape
- All theories agree that there is a strong coupling between the
- $\Sigma \pi$ channel (below $N \bar{K}$ threshold)
- $N \bar{K}$ channel (above $N \bar{K}$ threshold)
- Various theories:
- "normal" $q q q$-baryon resonance
(the constituent quark model has difficulty with $\Lambda(1405)$ mass)
- unstable bound state of $N \bar{K}$ (promoted by Dalitz and others)
- deeply bound state of $N \bar{K}$
- $q q q q \bar{q}$
- dynamically generated resonance in unitary coupled channel approach

Coupled Channel Chiral Unitary Theory

Chiral Theory

Effective chiral Lagrangian describes the interactions of the ground state baryons and mesons.

Coupled Channels

Exact unitarity is enforced amongst the coupled channels

$$
\Downarrow
$$

- Many predictions on hadrons have been given by E. Oset and others

Chiral Unitary Coupled Channel Approach

dynamically generate $\Lambda(1405)$ based on chiral unitary model

J. C. Nacher et al., Phys. Lett. B455, 55 (1999)

Difference in Lineshape

$$
\begin{aligned}
& \frac{d \sigma\left(\pi^{+} \Sigma^{-}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}++\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{(1)^{*}}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{-} \Sigma^{+}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}--\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{(1)^{*}}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{0} \Sigma^{0}\right)}{d M_{I}} \propto
\end{aligned}
$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- Difference in lineshapes is due to interference of isospin terms in calculation ($\mathrm{T}^{(\mathrm{I})}$ represents amplitude of isospin I term)
- Distortion of the lineshape is connected to underlying QCD amplitudes that generate the $\Lambda(\mathbf{1 4 0 5})$
- This analysis will measure all three $\Sigma \pi$ channels

Summary of Current Experimental Status

- Data is sparse
- All experiments show a distortion from a Breit-Wigner
- more data is needed

D. W. Thomas et al., Nucl. Phys. B56, 15 (1973)

Summary of Current Experimental Status

- Data is sparse
- All experiments show a distortion from a Breit-Wigner
- more data is needed

R. J. Hemingway, Nucl. Phys. B253, 742 (1985)

Summary of Current Experimental Status

- Data is sparse
- All experiments show a distortion from a Breit-Wigner
- more data is needed

[^0]
Outline

(1) Introduction

- What is the $\Lambda(1405)$?
- Chiral Unitary Theory of the $\Lambda(1405)$
(2) CLAS AnALYSIS
- Introduction to JLab and CLAS
- Decay Channels of Interest
- $\Sigma^{0}(1385)$ and K^{*} Background
- Fit to Extract Λ (1405) Lineshape
(3) Results
- $\Lambda(1405)$ Lineshape Results
- $\Lambda(1405)$ Cross Section Results
- $\Lambda(1520)$ Cross Section Results
- Cross Section Comparison

Conclusion

JLab and CLAS

- Jefferson Lab (JLab) located in Newport News, VA
- CEBAF (Continuous Electron Beam Accelerator Facility) gives 2 ns timing electron beam up to 6 GeV
- Halls A, B, C (+ D: upcoming)
- Hall $B=$ CLAS (CEBAF Large Acceptance Spectrometer) collaboration

Data From CLAS@JLab

- CLAS@Jefferson Lab
- liquid LH_{2} target
- $\gamma+\mathrm{p} \rightarrow \mathbf{K}^{+}+\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$

Data From CLAS@JLab

- CLAS@Jefferson Lab
- liquid LH_{2} target
- $\gamma+\mathrm{p} \rightarrow \mathbf{K}^{+}+\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$
- real unpolarized photon beam
- $E_{\gamma}<3.84 \mathrm{GeV}$
- ~20B total triggers

Data From CLAS@JLab

- CLAS@Jefferson Lab
- liquid LH_{2} target
- $\gamma+\mathrm{p} \rightarrow \mathbf{K}^{+}+\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$
- real unpolarized photon beam
- $E_{\gamma}<3.84 \mathrm{GeV}$
- ~20B total triggers
- measure charged particle
- $\overrightarrow{\mathrm{p}}$ with drift chambers

Data From CLAS@JLab

- CLAS@Jefferson Lab
- liquid LH_{2} target
- $\gamma+\mathrm{p} \rightarrow \mathbf{K}^{+}+\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$
- real unpolarized photon beam
- $E_{\gamma}<3.84 \mathrm{GeV}$
- ~20B total triggers
- measure charged particle
- $\overrightarrow{\mathrm{p}}$ with drift chambers
- timing with TOF walls

Reaction of Interest

$\gamma+\mathrm{p} \rightarrow K^{+}+\Lambda(1405) \rightarrow K^{+}+\Sigma+\pi$

- Final state of interest is K^{+}, Σ, π
- $\Sigma \pi$ resonances: $\Sigma(1385), \Lambda(1405), \Lambda(1520)$
- $K^{+} \pi$ resonance: K^{*} when $\pi=\pi^{+}$or π^{0}
- besides the $K^{+} \Sigma \pi$ state, we will also detect the $K^{+} \Lambda \pi$ state
- Resonance of $\Lambda \pi$ will be $\Sigma(1385)$
- Resonance of $K^{+} \pi$ will be K^{*}
- Background channels:
- $\Sigma(1385)$ - close in mass, large width ($\sim 35 \mathrm{MeV}$)
- K^{*} - overlap in 3-body phase space plot of K^{+}, Σ, π

Background Channels

- $\Sigma^{0}(1385) \rightarrow \Sigma \pi$
- $B R\left(\Lambda \pi^{0}\right)=87 \% \gg B R\left(\Sigma^{ \pm} \pi^{\mp}\right)=6 \%$ each \Rightarrow measure in $\Lambda \pi^{0}$, scale down to each $\Sigma \pi$ channel
- influence should be small due to branching ratio
- $K^{*} \Sigma$
- broad width - will overlap with signal
- subtract off incoherently
low energy bin

Background Channels

- $\Sigma^{0}(1385) \rightarrow \Sigma \pi$
- $B R\left(\Lambda \pi^{0}\right)=87 \% \gg B R\left(\Sigma^{ \pm} \pi^{\mp}\right)=6 \%$ each \Rightarrow measure in $\Lambda \pi^{0}$, scale down to each $\Sigma \pi$ channel
- influence should be small due to branching ratio
- $K^{*} \Sigma$
- broad width - will overlap with signal
- subtract off incoherently
high energy bin

$\Sigma(1385)$ is Fit in $\Lambda \pi^{0}$ Channel $\left(\gamma+\mathrm{p} \rightarrow K^{+}+\mathrm{p}+\pi^{-}+\pi^{0}\right)$

example:
1 energy and angle bin out of ~ 150
- $\Sigma(1385)$ is fit with templates of MC of
- $\Sigma(1385)$ (non-relativistic Breit-Wigner)
- $K^{*+} \Lambda \mathrm{MC}$
- very good fit results
$\Sigma(1385)$ is Fit in $\Lambda \pi^{0}$ Channel $\left(\gamma+\mathrm{p} \rightarrow K^{+}+\mathrm{p}+\pi^{-}+\pi^{0}\right)$

example:
1 energy and angle bin out of ~ 150
- $\Sigma(1385)$ is fit with templates of MC of
- $\Sigma(1385)$ (non-relativistic Breit-Wigner)
- $K^{*+} \Lambda \mathrm{MC}$
- very good fit results
$\Sigma(1385)$ is Fit in $\Lambda \pi^{0}$ Channel $\left(\gamma+\mathrm{p} \rightarrow K^{+}+\mathrm{p}+\pi^{-}+\pi^{0}\right)$

example:
1 energy and angle bin out of ~ 150
- $\Sigma(1385)$ is fit with templates of MC of
- $\Sigma(1385)$ (non-relativistic Breit-Wigner)
- $K^{*+} \Lambda \mathrm{MC}$
- very good fit results
$\Sigma(1385)$ is Fit in $\Lambda \pi^{0}$ Channel $\left(\gamma+\mathrm{p} \rightarrow K^{+}+\mathrm{p}+\pi^{-}+\pi^{0}\right)$

example:
1 energy and angle bin out of ~ 150
- $\Sigma(1385)$ is fit with templates of MC of
- $\Sigma(1385)$ (non-relativistic Breit-Wigner)
- $K^{*+} \Lambda \mathrm{MC}$
- very good fit results

Fit to Lineshape With MC Templates

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

example:
1 energy and angle bin out of ~ 150

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

example:
1 energy and angle bin out of ~ 150

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

example:
1 energy and angle bin out of ~ 150

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Fit to Lineshape With MC Templates

example:
1 energy and angle bin out of ~ 150

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{* 0}$
- assigned the remaining contribution to the $\Lambda(1405)$

Outline

(1) Introduction

- What is the $\Lambda(1405)$?
- Chiral Unitary Theory of the $\Lambda(1405)$
(2) CLAS Analysis
- Introduction to JLab and CLAS
- Decay Channels of Interest
- $\Sigma^{0}(1385)$ and K^{*} Background
- Fit to Extract $\Lambda(1405)$ Lineshape
(3) Results
- Λ (1405) Lineshape Results
- $\Lambda(1405)$ Cross Section Results
- $\Lambda(1520)$ Cross Section Results
- Cross Section Comparison

Results of Lineshape

- lineshapes do appear different for each $\Sigma \pi$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, narrow than $\Sigma^{-} \pi^{+}$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

Results of Lineshape

- lineshapes do appear different for each $\Sigma \pi$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, narrow than $\Sigma^{-} \pi^{+}$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

Results of Lineshape

- lineshapes do appear different for each $\Sigma \pi$ decay mode
- $\Sigma^{+} \pi^{-}$decay mode has peak at highest mass, narrow than $\Sigma^{-} \pi^{+}$
- lineshapes are summed over acceptance region of CLAS
- difference is less prominent at higher energies

Theory Prediction From Chiral Unitary Approach

$$
\begin{aligned}
& \frac{d \sigma\left(\pi^{+} \Sigma^{-}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}+\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{\left.()^{*}\right)}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{-} \Sigma^{+}\right)}{d M_{I}} \propto \frac{1}{2}\left|T^{(1)}\right|^{2}+\frac{1}{3}\left|T^{(0)}\right|^{2}--\frac{2}{\sqrt{6}} \operatorname{Re}\left(T^{(0)} T^{\left.(1)^{*}\right)}\right)+O\left(T^{(2)}\right) \\
& \frac{d \sigma\left(\pi^{0} \Sigma^{0}\right)}{d M_{I}} \propto \quad+O\left(T^{(2)}\right)
\end{aligned}
$$

J. C. Nacher et al., Nucl. Phys. B455, 55

- $\Sigma^{-} \pi^{+}$decay mode peaks at highest mass, most narrow
- difference in lineshapes is due to interference of isospin terms in calculation ($\mathrm{T}^{(\mathrm{I})}$ represents amplitude of isospin I term)
- we have started trying fits to the resonance amplitudes

$\Lambda(1405)$ Differential Cross Section Results

- lines are fits with $6^{\text {rd }}$ order Legendre polynomials
- clear turnover of $\Sigma^{+} \pi^{-}$channel at forward angles
- theory: contact term only, no angular dependence for interference
- experiment: able to see strong isospin AND angular interference effect

$\Lambda(1405)$ Differential Cross Section Results

- lines are fits with $6^{\text {rd }}$ order Legendre polynomials
- clear turnover of $\Sigma^{+} \pi^{-}$channel at forward angles
- theory: contact term only, no angular dependence for interference
- experiment: able to see strong isospin AND angular interference effect

$\Lambda(1405)$ Differential Cross Section Results

- lines are fits with $6^{\text {rd }}$ order Legendre polynomials
- clear turnover of $\Sigma^{+} \pi^{-}$channel at forward angles
- theory: contact term only, no angular dependence for interference
- experiment: able to see strong isospin AND angular interference effect

$\Lambda(1520)$ Differential Cross Section Comparison

- binning is in $t-t_{\text {min }}$
- good agreement with $\mathrm{p} K^{-}$channel from CLAS (unpublished) - data provided by R. de Vita et al. (INFN Genova)

Extrapolation of Cross Sections

- Ad hoc functions were chosen to fit the measured cross sections
- total cross section $\sigma_{\text {tot }}$ depends strongly on how cross section is extrapolated
- final result is a statistical mean of the various fit functions used
- $\Sigma(1385)$

Extrapolation of Cross Sections

- Ad hoc functions were chosen to fit the measured cross sections
- total cross section $\sigma_{\text {tot }}$ depends strongly on how cross section is extrapolated
- final result is a statistical mean of the various fit functions used
- $\Lambda(1405)$

Extrapolation of Cross Sections

- Ad hoc functions were chosen to fit the measured cross sections
- total cross section $\sigma_{\text {tot }}$ depends strongly on how cross section is extrapolated
- final result is a statistical mean of the various fit functions used
- $\Lambda(1520)$

Extrapolated Total Cross Sections

- final result is a statistical mean of the various fit functions used
- $\Sigma(1385)$

Extrapolated Total Cross Sections

- final result is a statistical mean of the various fit functions used
- $\Lambda(1405)$

Extrapolated Total Cross Sections

- final result is a statistical mean of the various fit functions used
- $\Lambda(1520)$

Extrapolated Total Cross Sections

- final result is a statistical mean of the various fit functions used
- comparison of $\Sigma(1385), \Lambda(1405), \Lambda(1520)$

Conclusion

- Most precise measurement of $\Lambda(1405)$ for any reaction
- Strong hints of "dynamical" nature
- Difference in lineshapes observed
- Strong effects of both isospin $I=0$ and $I=1$
- Hints of dynamical nature of $\Lambda(1405)$?
- Shifts in opposite direction compared to theory
- Difference in $\mathbf{d} \boldsymbol{\sigma} / \mathbf{d} \cos \boldsymbol{\theta}_{\boldsymbol{K}^{+}}^{\text {c.m. }}$ behavior observed
- Again, effects of both isospin $I=0$ and $I=1$
- Cross sections for $\Sigma(1385)$ and $\Lambda(1520)$ also measured
- Spin and parity experimentally determined for first time
- $J^{P}=\frac{1}{2}^{-}$
- Polarization at forward K^{+}angles, higher energies $W \sim 2.5-2.8 \mathrm{GeV}$ is ~ 40%
- Falloff of lineshape at $N \bar{K}$ threshold also supports $J^{P}=\frac{1}{2}^{-}$

Fit to Lineshape With MC Templates

- subtract off $\Sigma(1385), \Lambda(1520), \mathbf{K}^{+} \Sigma^{-} \pi^{+}$phase space
- assigned the remaining contribution to the Λ (1405)

$$
M\left(\Sigma^{-} \pi^{+}\right) \text {vs } M\left(K^{+} \pi^{+}\right) \text {Plots }
$$

low energy bin
acceptance is good over entire area

$$
M\left(\Sigma^{-} \pi^{+}\right) \text {vs } M\left(K^{+} \pi^{+}\right) \text {Plots }
$$

high energy bin
acceptance is good over entire area

Effect of K^{*} on Lineshape

$$
1.950<W[\mathrm{GeV}]<2.050 \text { (below } K^{*} \text { threshold) }
$$

K^{*} vs Y^{*} mass plot for Σ^{+}channel

Effect of K^{*} on Lineshape

$1.950<W[\mathrm{GeV}]<2.050$ (below K^{*} threshold)

extracted lineshape

Comparison of Lineshapes for Two Σ^{+}Channels

Comparison of Lineshapes for Two Σ^{+}Channels

Comparison of Lineshapes for Two Σ^{+}Channels

$\Lambda(1405)$ Comparison of Two Σ^{+}Channels

$\Lambda(1405)$ Comparison of Two Σ^{+}Channels

$\Lambda(1405)$ Comparison of Two Σ^{+}Channels

$\Lambda(1520)$ Comparison of Two Σ^{+}Channels

$\Lambda(1520)$ Comparison of Two Σ^{+}Channels

$\Lambda(1520)$ Comparison of Two Σ^{+}Channels

Outline

(5) Backup Slides

(6) Spin and Parity

J^{P} of $\Lambda(1405)$

no previous direct experimental evidence for the spin and parity (PDG assumes $1 / 2^{-}$) "Note on the $\Lambda(1405)$ " 1998 PDG, R.H. Dalitz

How do we measure these quantities?

- $\mathbf{~ s p i n ~ - ~ m e a s u r e ~ d i s t r i b u t i o n ~ i n t o ~} \Sigma \pi$
- flat distribution is best evidence possible for $J=1 / 2$
- parity - measure polarization of Σ from Λ (1405)
- Polarization direction as a function of Σ decay angle will be determined by J^{P} of $\Lambda(1405)$

Determination of Spin

Fit to $\Sigma \pi$ distribution is FLAT

- consistent with $J=1 / 2$
- fits to higher moments may be necessary

s-wave, p-wave Scenario

$\Lambda(1405) \rightarrow \Sigma \pi$ is s-wave

$$
\Leftrightarrow J^{P}=1 / 2^{-}
$$

$\Lambda(1405) \rightarrow \Sigma \pi$ is p-wave $\Leftrightarrow J^{P}=1 / 2^{+}$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$
 polarization does not change with Σ^{+}angle $\left(\theta_{\Sigma^{+}}\right)$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$
 polarization does not change with Σ^{+}angle $\left(\theta_{\Sigma^{+}}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$

polarization does not change with Σ^{+}angle $\left(\theta_{\Sigma^{+}}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

furthermore, this measured Σ^{+}polarization is the $\Lambda(1405)$ polarization

Determination of Parity

polarization of $\Lambda(1405)$ in direction \perp to production plane is measured

- $W=2.6 \mathrm{GeV}$
- forward K^{+}angles
- use reaction:
$\Lambda(1405) \rightarrow \Sigma^{+} \pi^{-}$, $\Sigma^{+} \rightarrow p \pi^{0}$
- very large hyperon decay parameter $\alpha=-0.98$
- background is $\sim 10 \%$ $\Sigma(1385)$

polarization does not change with Σ^{+}angle $\left(\theta_{\Sigma^{+}}\right)$

$$
\Rightarrow J^{P}=1 / 2^{-} \text {is confirmed }
$$

furthermore, this measured Σ^{+}polarization is the $\Lambda(1405)$ polarization $\Rightarrow \Lambda(1405)$ is produced with $\sim+40 \%$ polarization

[^0]: Niiyama et al., Phys. Rev. C78, 035202 (2008)

